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Fig. 8—AFC system using simultaneous resonance.

rect the microwave frequency for simultaneity. A strong
electronic resonance signal may be observed with only
100 microwatts of microwave power leaving the major
portion of the klystron power for useful output. The
blocks marked electronic operator prepare the resonance
signals so they may be fed into a phase detector and
thus give rise to an error signal.

LIMITATIONS

The major limitation on the accuracy of measure-
ment or control is the natural resonance line width of
the electron resonance. One of the substances giving
the. strongest electron resonance is diphenyl-trinitro-
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phenyl-hydrazyl with a line width of 2.7 Gauss. On the
assumption that the center one tenth of this curve could
be located, an accuracy of 1 part in 10* could be ob-
tained. Another factor contributing to inaccuracy is
magnetic field homogeneity. All of the sample must see
the same field strength else the resonance line will be
broadened beyond its natural width. Good field homo-
geneity may be insured by careful alignment of the pole
faces and by using a large ratio of pole diameter to gap
distance. Careful shimming of the pole face will also im-
prove field homogeneity. Fields more homogeneous than
one part in 10% over a square centimeter are difficult to
attain because of local inhomogeneities in the magnetic
properties of the pole face material.

Narrow electron resonance lines may be obtained
from the electrons in an electron beam which is made to
interact with the microwave field. Line widths of the
order of 0.5 Gauss have been reported by this method
giving a frequency ratio accurate to one part in 10%. The
narrowest electron resonance to come to our attention
is that of a solution of sodium in ammonia with a half
maximum width of 0.08 Gauss. This electron resonance
used with a water proton resonance might give rise to
control accuracies of one part in 108, depending on the
signal to noise ratio for the electron resonance and the
field homogeneity.

The observed width of the proton resonance in water
is usually due to the magnetic field inhomogeneity as it
has been possible to obtain in fields of 7000 Gauss proton
resonance curves with a line width of 0.001 Gauss. This
corresponds to a resolution of one part in 7 million.

Discontinuities in a Rectangular Waveguide Partially
Filled with Dielectric

CARLOS M. ANGULOt

Summary—The modal spectrum for a rectangular waveguide
with a dielectric slab at the bottom of the guide is obtained following
the Characteristic Green’s Function method developed by Marcu-
vitz. Then a four-terminal network is found as equivalent to the
junction of the partially filled waveguide and an empty rectangular
waveguide.

An integral equation is written for the electric field at the plane
of the junction and variational expressions are derived for the
parameters of the four-terminal network connecting the transmission
line equivalent to the partially filled waveguide to the transmission
line equivalent to the empty guide.

A reasonable guess for the electric field at the discontinuity gives
approximate values for the parameters of the four-terminal network.
These values agree with experiment.

The parameters of the network are plotted vs frequency and
thickness of the slab.

* Manuscript received by PGMTT, June 20, 1956.
1 Brown University, Providence, R. 1

INTRODUCTION

CONSIDERABLE AMOUNT of literature has
A been devoted recently to surface waves. The
reader is referred to van Bladel and Higgins! for
an introduction to the effect of dielectrics in rectangular
waveguides and to Barlow and Cullen? for surface waves
in dielectric slabs. The main purpose of this paper is to
obtain a four-terminal network equivalent to the junc-
tion of an empty rectangular waveguide and a rectangu-
lar waveguide partially filled with dielectric. The
Schwinger wvariational principle combined with the
1]J. van Bladel and T. J. Higgins, “Cut-off frequency in two-
dielectric layered rectangular wave guides,” J. App. Phys., vol. 22,
p- 329; March, 1951.

?H. M. Barlow and A, L. Cullen, “Surface waves,” Proc. IEE,
Part I11, vol. 100, p. 329; November, 1953.
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modal analysis and synthesis technique developed by
Marcuvitz give excellent results in our problem and en-
couraged the author to extend the method to the open-
dielectric slab as reported in another paper.? In the
methods used in this paper it is important to know the
mode spectrum in the partially-filled guide as well as to
be sure of the completeness of the mode spectrum.
Therefore a systematic method of finding the modes is
also given in this paper. This is the Characteristic
Green’s Function method given by Marcuvitzt which
vields the modes he gave in his communication to the
annual meeting of the Physical Society in 1952.

The geometry of the partially-filled waveguide allows
us to separate the characteristic modes into two groups
(see Fig. 1): \

E, modes, for which H, = 0 and

H, modes, for which E, = 0.

Let us assume that the launching of energy in one or
both of the waveguides of Fig. 1 is such that only E,
modes are excited. Under these circumstances only E,
modes will be present in both guides. We will not men-
tion this fact again and it will be understood that we
refer only to E, modes throughout this paper.
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Fig. 1—(a) Longitudinal section of the junction;
(b) cross section of waveguide 1.

THE CHARACTERISTIC MODES OF THE
PARTIALLY-FILLED GUIDE

The direction of propagation is OZ. We will refer to
the projection of each field on the XOY plane as the
transverse component and we will represent it with the
subscript .

The transversal component of the fields can be repre-
sented as follows:

3 C. M. Angulo, “Diffraction of surface waves by a semi-infinite
dielectric slab,” IRE TraNs., vol. AP-5, no. 1; January, 1957,

¢ N. Marcuvitz, “Field Representations in Spherically Stratified
Regions,” N.Y.U, Res. Rep. No. En-29, 1951,
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The set of characteristic E, modes is a complete
orthonormal set. In order to satisfy Maxwell’s equa-
tions, the following relations should hold:
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where xo and y, are the unit vectors in the OX and
OV directions; {uy Mm, ¥nm are the propagation wave-
number in the OX, OY and OZ directions; €(y) is the
relative permittivity; K?=w?uqeie(y) is the propagation
wave-number of a plane wave in the direction perpen-
dicular to the front wave; uo and ¢, are the permeability
and permittivity of vacuum. Finally

1 :}Cn,m

Lnim = =
Vim

(8)
wWey

is defined as the characteristic impedance of the wave-
guide for the »n, m mode.

It is clear that for one given mode the propagation
wave numbers {, and 3C,,, are the same in both media.
However, 7, will have different values in the dielectric
and in the air.

The solutions of (4) are obviously proportional to

IZ.am

sin . (9)
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The solution of (5) is more complicated because of the
variation of e(y). We proceed to find the function
¥u(v) by the Characteristic Green’s Function method.
This method is most advantageous, since it leads di-
rectly to the completeness relation

NSy — ¥) = 2 bn(¥u(¥"). (10)

For an explanation of the method in general, see
Marcuvitz.* In our case we have to solve
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[dy () dy+ e(y)] (3,9 9) (y—9) (11a)

[ aG ] I: aG :l 0
dy dy=o dy dy=s

where §(y—9') is the Dirac’s delta function and G is the
Characteristic Green’s Function. p(v) is equal to the
square of the propagation wave number in the OY di-
rection; .e., p(y) =7t

(11b)

Since
€ d<y<b
€ = 12
) {1 0<y<d (12)
p(v) will also take two constant values.
For one mode
wzlJ.oéo = Koz = n2 + 772m(air) + 3Czn,m (13&)
w2M0€05 = K2 = §'n2 + 7l2m(diel) + Gc2n,m- (13b)
Therefore the two values that (¥) takes are
P=p+Ke—1) d<y<b (14)
p(y) =
» 0<y<d

The solution for (11) is
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The normalized mode spectrum in the y direction is
then given as minus the summation of all the residues
of G(y, ¥, p). The residues of (15) give the ¥n(y) for
0<y<d and the residues of (16) give the functions
Yu(y) for d<y <b (Fig. 1).

Eq. (18) has solutions for which

Ko< p < Kpe. (19)

These modes have sinusoidal variation in the dielectric
(0 <y <d) and hyperbolic variation in the air. They are
the surface waves and the number of them that the
partially-filled guide can support depends on the fre
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G(%%P)=" \/? ford< f ek (16)
VP tan v/p(b — d) + tan +/p'd ¥ .

The symbol vy stands for ¥ or 4’, whichever is smaller,
and v for whichever is larger.

If we consider now the constant p as a complex vari-
able, we have

1
¥y =) = — —.fG(y, ¥y p)dp. (17)
2mg
The integration must be done counterclockwise
around all the singularities of G(v, v/, $) in the p plane.
In the present situation the singularities are only an
infinite discrete set of poles along the real axis (Fig. 2).
These poles are the values of p for which

’

VB tan v — ) + X2

€

tan v/p'd = 0 (18a)

P — p = Ko¥e — 1). (18b)

These values of p give the resonances of the system or
the characteristic modes of the partially-filled guide.

€

quency and thickness of the slab. The lowest of these
surface waves has no cut-off frequency. We will assume
in this paper that the frequency is such that the struc-
ture has only one surface wave among its characteristic
modes. Fig. 3 plots niey and jnuin vs Kod for different
values of the relative permittivity e for the only surface
wave in our case. Fig. 4 is the plot of JC.
Eq. (18) has also solutions for which

Ko < Konv/e < p. (20)

These modes have sinusoidal variation in the OY direc-
tion in both regions, dielectric and air. For the wave-
length of the excitation in this paper (A =3.2 cm) these
are nonpropagating modes. Figs. 5 to 8 (p. 72) are the
plots for 7@y and 7@iey for the first five modes of this
type and e=2.49,

Finally, the mode functions are obtained as follows:

alr

— { diel
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Poym {2, v) = x_o)Bnd,,i sin — x cos 777: l {y } (21a)
a ¥
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Fig. 4—Propagation wave number in the OZ direction for the
propagating mode (slow wave).
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The normalization constant is chosen such that
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Fig. 5—Propagation wave number in the OY direction for the
first two nonpropagating modes.
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Fig. 6—Propagation wave number in the OY direction for
the third nonpropagating mode.

TaE FOoUR-TERMINAL NETWORK EQUIVALENT
TO THE DISCONTINUITY

In the empty rectangular waveguide we use a repre-
sentation similar to the one described previously. It is
well known and we will not write any details here.
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Fig. 7—Propagation wave number in the OY direction for
the fourth nonpropagating mode.
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Fig. 8—Propagation wave number in the OY direction for
the fifth nonpropagating mode.

Let us represent the transversal magnetic field Eg at
the junction of the two guides in terms of the character-
istic modes of guide 1 and in terms of those of guide 2.
We can equate the two representations, since the trans-
versal magnetic field is continuous at z=0. Therefore:
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LD (x, 3) — 2, Va®Va®(0) kO (a, 3)

oo/

= = LOOR® (%, 9) + 2, Va®Va® (05 ®(s, 3) (24)

where the upper index refers to waveguide 1 or 2 in
Fig. 1, the summations are actually double summations
and only for convenience we have indicated the mode
with only one subindex. In (24) we have also assumed
that each guide propagates only the lowest mode and
we have separated these modes from the summations
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If the unknown field is written as follows:
i, ) = LO(O058i(s, 9) + 1, (0f8a(s, 5).  (27)
One arrives at the following relations
Vi®(0) = Zul1M(0) + Z121:2(0) (28a)
Vi (0) = Zoul;®(0) -+ ZI1P(0) (28b)

which link the dominant modes in the two guides re-
placing the effect of the discontinuity byfa four-terminal
network. The expressions for the impedances are sta-
tionary and can be calculated with a"small error without
knowing the exact field at z=0.
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and indicated them with the subindex 1. The prime in
the summations indicates that the first or lowest mode
is excluded.

In view of the orthogonality properties (22) and of
(1) and (2) we can write (24) as follows:

LOO)FD (s, 3) + LOOT®(x, 5)
b a
==f dy’f 6‘}?(90, v; o, y’)X_zT)-E(x’, yda'. (25)
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s
[n (25) we have written the dyadic Y which has the
following meaning

14
Yla, vi o, v) = 3 V@l ®(x, )™ (s, 3

+ X V@@ (x, 9V, 3'). (26)

Eq. (25) is the integral equation for the electric field
at the discontinuity, We cannot solve it exactly but we
can use the Schwinger variational principle for the un-

b a 2
[ f f ZXEi(x, 9) - T (x, y)dxdy]
0 0

The above expressions are minima for the exact field.
Of all the approximations tried one of them gives a very
convergent series and the smallest value for the admit-
tance. Two points measured experimentally agree within
5 per cent with the curve for 1/Zs vs Kod. The approxi-
mation consists of taking the field of the dominant
mode in the empty waveguide as the field at the discon-
tinuity, 7.e.:

s, 9) =B, 9) = @O, 9). (30)

If one substitutes into (29) and performs the neces-
sary integrations one obtains

known electric field.
1 1/ e
AN\ 2 26301 ,m D

7y oD o
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7 07, @ 1 =
Vﬁi _ S e (31b)
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Zi, W 1 &
= 3 Ma? (316)
VAT Mi? e
where
B m(diel) m(diel) 2 1 .
e {1 - [" : ] —} Sin 7, dieDd, (32)
nm(dlel) nm(mr) €
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Fig. 9—(a) Shunt impedance offered by the discontinuity;
(b) transformer ratio.
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The series converges very rapidly and only five terms
are necessary. Bi,maien is given in (23a); 7. 1s plotted in
Figs. 5-8 for m=2, 3, 4, 5 and in Fig. 3 for m=1.

Fig. 9 is a plot of

VA 1 71,02
i 2 and 7 = ———V 20 s Kod
Z1,0 My

for an X-band rectangular waveguide, for A=3.2 cm
and e=2.49.

Eq. (31) indicates that we can replace the discon-
tinuity by the four-terminal network of Fig. 10, a pure

O —
—— —
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z'-' ‘ ]Z:o
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Filled az |Air Guide
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| |
l |
| l:n 1|'
T T

Fig. 10—Circuit equivalent tc the discontinuity.

shunt and an ideal transformer with the following trans-
form ratio:

R Lo 1 Zy,®
n? =

Z1 M2 Z, W

The reference planes are at the plane of the disconti-
nuity z=0 in Fig. 1.
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