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Fig. 8—AFC system using simultaneous resonance.

rect the microwave frequency for simultaneity. A strong

electronic resonance signal may be observed with only

100 microwatt of microwave power leaving the major

portion of the klystron power for useful output. The

blocks marked electronic operator prepare the resonance

signals so they may be fed into a

thus give rise to an error signal.

LIMITATIONS

phase detector and

The major limitation on the accuracy of measure-

ment or control is the natural resonance line width of

the electron resonance. One of the substances giving

the. strongest electron resonance is diphenyl-trinitro-

phenyl-hydrazyl with a line width of 2.7 Gauss. On the

assumption that the center one tenth of this curve could

be located, an accuracy of 1 part in 104 could be ob-

tained. Another factor contributing to inaccuracy is

magnetic field homogeneity. All of the sample must see

the same field strength else the resonance line will be

broadened beyond its natural width. Good field homo-

geneity may be insured by careful alignment of the pole

faces and by using a large ratio of pole diameter to gap

distance. Careful shimming of the pole face will also im-

prove field homogeneity. Fields more homogeneous than

one part in 106 over a square centimeter are difficult to

attain because of local inhomogeneities in the magnetic

properties of the pole face material.

Narrow electron resonance lines may be obtained

from the electrons in an electron beam which is made to

interact with the microwave field. Line widths of the

order of 0.5 Gauss have been reported by this method

giving a frequency ratio accurate to one part in 105. The

narrowest electron resonance to come to our attention

is that of a solution of sodium in ammonia with a half

maximum width of 0.08 Gauss. This electron resonance

used with a water proton resonance might give rise to

control accuracies of one part in 10G, depending on the

signal to noise ratio for the electron resonance and the

field homogeneity.

The observed width of the proton resonance in water

is usually due to the magnetic field inhomogeneity as it

has been possible to obtain in fields of 7000 Gauss proton

resonance curves with a line width of 0.001 Gauss. This

corresponds to a resolution of one part in 7 million.

Discontinuities in a Rectangular

Filled with Dielectric*

Waveguide Partially

CARLOS M. ANGULO~

Summary—The modal spectrum for a rectangular waveguide

with a dielectric slab at the bottom of the guide is obtained following

the Characteristic Green)s Function method developed by Marcu-

vitz. Then a four-terminal network is found as equivalent to the

junction of the partially filled waveguide and an empty rectangular

waveguide.

An integral equation is written for the electric field at the plane

of the junction and variational expressions are derived for the

parameters of the four-terminal network connecting the transmission

line equivalent to the partially tilled waveguide to the transmission

line equivalent to the empty guide.

A reasonable guess for the electric field at the discontinuity gives

approximate values for the parameters of the four-terminal network.
These values agree with experiment.

The parameters of the network are plotted vs frequency and
thickness of the slab.

* Manuscript received by PGMTT, June 20, 1956.
j’ Brown University, Providence, R. I.

INTRODUCTION

CONSIDERABLE AMOUNT of literature has

A
been devoted recently to surface waves. The

reader is referred to van Bladel and Higginsl for

an introduction to the effect of dielectrics in rectangular

waveguides and to Barlow and Cullen2 for surface waves

in dielectric slabs. The main purpose of this paper is to

obtain a four-terminal network equivalent to the junc-

tion of an empty rectangular waveguide and a rectangu-

lar waveguide partially filled with dielectric. The

Schwinger variational principle combined with the

1 J. yan 131adel and T. J. Higgins: “Cut-off frequency in two-
dielectnc layered rectangular wave gmdes, ” J. App. Phys., Vo]. 22,
p. 329; March, 1951.

2 H. M. Barlow and A. L. Cullen, ‘!5urface waves, ” Proc. .7EE,
Part 111, vol. 100, p. 329; November, 1953.
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moc~al analysis and synthesis technique developed by

Marcuvitz give excellent results in our problem and en-

couraged the author to extend the method to the open-

dielectric slab as reported in another paper.3 In the

methods used in this paper it is important to know the

mode spectrum in the partially-filled ~uide as well as to

be sure of the completeness of the mode spectrum.

Therefore a systematic method of finding the modes is

also given in this paper. This is the Characteristic

Green’s Function method given by Iblarcuvitz4 which

yields the modes he gave in his communication to the

annual meeting of the Physical Society in 1952.

The geometry of the partially-filled wave.guide allows

us to separate the characteristic modes into two groups

(see Fig. 1):

E, modes, for which H, = O and

Hv modes, for which Eu = 0.

Let us assume that the launchinz of energy in one or

both of the waveguides of Fig, 1 is such that only E,,

mocles are excited. Under these circumstances only EJ

modes will be present in both guides. We will not mem

tion this fact again and it will be understood that we

refer only to Eu modes throughout this paper.

Et(iv, y, Z) = ~ &(Z)~,m(& y)
+

(1)

Z(X! J’, s) = ‘i In,m(z)x,m(z, y), (2)
It,’fn

The set of characteristic E& modes is a complete

orthonorrnal set. In order to satisfy Maxwell’s equa-

tions, the following relations should hold:
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Fig. l—(a) Longitudinal section of the junction;
(b) cross section of waveguide 1.

THIZ CHARACTERISTIC MODES OF THE

PARTIALLY-FILLED GUIDE

The direction of propagation is OZ. lh7e will refer to

the projection of each field on the XO Y plane as the

transverse component and we will represent it with the

subscript t.

The transversal component of the fields can be repre-

sented as follows:

O Y directions; C%, q~, %,~ are the propagation wave-

number in the OX, O Y and 02 directions; e(y) is the

relative permittivity; K9 = COzpoeoe(y) is the prl~pagat’ion

wave-number of a plane wave in the direction perpen-

dicular to the front wave; MOand Coare the permeability

and perlnittivity of vacuum. Finally

1 Je.,m
z n,.=—=

Y n,rrl Wefl
(8)

is defined as the characteristic impedance of the wa-ve-

guide for the n, m mode.

It is clear that for one given mode the propagation

wave numbers (n and 3f.3n,~ are the same in both media.

However, q~ will have different values in the dielectric

and in the air.

The solutions of (4) are obviously proportional to

(9)
a

The solution of (5) is more complicated because of the

variation of e(y). We proceed to find the function

~~(y) by the Characteristic Green’s Function method.

This method is most advantageous, since it leads di-

rectly to the completeness relation

~(Y)NY — Y?) = x &ln.(y)tm(y’). (:10)

3 C. M. Angulo, “Diffraction of surface waves by a semi-infinite
m

dielectric slab, ” IRE TRANS., vol. AP-5, no. 1; January, 1957.
4 N, M arcuvitz, “Field Representations in Spherically Stratified

For an explanation of the method in general, see

Regions$” N.Y.U, Res. Rep. No. En-29, 1951. Marcuvitz\ In our case we have to solve
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dld
-+ :;:

Z c(y) dy 1
— G(y, y’, $) = – ti(y – y’) (ha)

[2.=0=[:1.=,= 0
(llb)

where 8 (y — y’) is the Dirac’s delta function and G is the

Characteristic Green’s Function. ~(y) is equal to the

square of the propagation wave number in the O Y di-

rection; i.e., ~(y) =qz.

Since

{

d<y<b
e(y) = e

1 O<y<d
(12)

@(Y) will also take two constant values,

For one mode

OJ2POC0= K02 = [.2 + ~2m(air) + WZn,m (13a)

UZpoeoe = K2 = (nz + ~z?n(d,el) + Kzn,r,. (13b)

Therefore the two values that ~(y) takes are

{

j’=P+KO’(C–l) d<y<b (14)
P(Y) =

P “<y <d.

The solution for (11) is

Fig. 2

The normalized mode spectrum in the y direction is

then given as minus the summation of all the residues

of G(y, y’, ~). The residues of (15) give the ~~(y) for

O <y < d and the residues of (16) give the functions

I)m(y) ford <y<b (Fig. 1).

Eq. (18) has solutions for which

KO < p < KO~; (19)

These modes have sinusoidal variation in the dielectric

(O< y <d) and hyperbolic variation in the air. They are

the surface waves and the number of them ‘that the

partially-filled guide can support depends on the fre

The symbol y< stands for y or y’, whichever is smaller,

and y> for whichever is larger.

If we consider now the constant P as a complex vari-

able, we have

e(y)ti(y – y’) = – -$f G(y, y’, p)d$ (17)

The integration must be done counterclockwise

around all the singularities of G(y, y’, j) in the p plane.

In the present situation the singularities are only an

infinite discrete set of poles along the real axis (Fig. 2).

These poles are the values of P for which

P’ – p = K,’(E – 1). (18b)

These values of@ give the resonances of the system or

the characteristic modes of the partially-filled guide.

for”<y<d

“<y’<d
(15]

d<y<b
for

d<y’ <b.
(16)

quency and thickness of the slab. The lowest of these

surface waves has no cut-off frequency. We will assume

in this paper that the frequency is such that the struc-

ture has only one surface wave among its characteristic

modes. Fig. 3 plots ~(di~l) and j~(air) vs .KOL?for different

values of the relative permittivity ~ for the only surface

wave in our case. Fig. 4 is the plot of ~.

Eq. (18) has also solutions for which

K. < Ko~; < p. (20)

These modes have sinusoidal variation in the O Y direc-

tion in both regions, dielectric and air. For the wave-

length of the excitation in this paper (A= 3.2 cm) these

are nonpropagating modes. Figs. 5 to 8 (p. 72) are the

plots for V(a,ir) and ~(ciiel) for the first five modes of this

type and e = 2.49.

Finally, the mode functions are obtained as follows:

+ {:2
l’?

-+ {w {%1} y – b
.,m [x, y) = xoBn,m sin ~ x cos ~~

{}
(21a)

Y
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Fig. 3–-Propagation wave number in the O Y direction for the
propagating mode (slow wave).
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Fig. 4—Propagation wave number in the 02 direction for the
propagating mode (slow wave).
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The normalization constant is chosen such that-bHdy
a+ +

ZUX en,m(x, y) Z,m(% y)~~ = 1 (22)

o 0

ancl its value is

—

?27r {%1)
— 7.
a ---+ rz7r {K,] y--b

xocos—xsin~~

{)

{ }]
(~!lb)

1 a ,Y “

e
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{
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[

sin 2~m@irj(b – d)

1}

112
1+ + — 1+

2qm(cliel)~ COS2 nm@irJ(b — d) ‘d 2vm(air) (b – d)

(23a)

~m(diel)

B
Cos qm(di’l)d

~,m(air) = _ B (diel),
~m(air) COS qm@)(b — d) ‘“m

(23b)
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Fig. 5—Propagation wave number in the O Y direction for the
first two nonpropagating modes.
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Fig. 6—Propagation wave number in the O Y direction for
the third nonpropagating mode.
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Fig. 7—Propagation wave number in the 0 I’ direction for
the fourth nonpropagating mode.
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Fig. 8—Propagation wave number in the 0 Y direction for
the fifth nonpropagating mode.

THE FOUR-TERMINAL NETWORK EQUIVALENT

TO THE DISCONTINUITY

In the empty rectangular waveguide we use a repre-

sentation similar to the one described previously. It is

well known and we will not write anv details here.

-+
Let us represent the transversal magnetic field Ht at

the junction of the two guides in terms of the character-

istic modes of guide 1 and in terms of those of guide 2.

We can equate the two representations, since the trans-

versal magnetic field is continuous at z = O. Therefore:
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Ilqo:)z(’y%, y) – ~ Yn(’)vn(l)(o) Z’(’)(Z, y)
?7,

If the unknown field is written as follows:

Zt(x, y) = I-lqo)jl(z, y) + IJ’)(0)E,(X, y). (27)

= -- lJ’’)(0)~1(2@, y) + ~ Ymf2jVm(2J(0)~mC2J(X, y) (24)
One arrives at the following relations

“n v,(’)(o) = 2,,11(’)(0) + 2,211(’)(0)

VI(2) (0) = 22,11(1)(0) + Z221,@)(ID)
where the upper index refers to waveguide 1 or 2 in

Fig. 1, the summations are actually double summations which link the dominant modes’ in thevtwo

(ma,)

(2!3b)

guides re-

and only for convenience we have indicated the mode placing the effect of the discontinuity by~a four-terminal

with cmly one subindex. In (24) we have also assumed network. The expressions for the impedances are s,ta.-

that each guide propagates only the lowest mode and tionary and can be calculated with a’small error without

we have separated these modes from the summations knowing the exact field at z = O.

baSf ba
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1 00 00

E– b

[s f
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LJO Jo

_——

and indicated them with the subindex 1. The prime in

the summations indicates that the first or lowest mode

is excluded.

In view of the orthogonality properties (22) and of

(1) and (2) we can write (24) as follows:

b
—.—.

Ss
dy’ a~(z, y; i, y’) X~oO~t(Z’, y’)di. (25)

o 0
e

[n (25) we have written the dyadic Y which has the

foIlowirlg meaning

ilk y: $’, y’) = 5 Yn(’)zwx, Y)73W,y’)
n

+ & ym(’)7m(2) (%, y)~n(2)(#’, y’). (26)
m

Eq. (25) is the integral equation for the electric field

at the discontinuity. We cannot solve it exactly but we

can use the Schwinger variational principle for the un-

known electric field.

J

The above expressions are minima for the exact field.

Of all the approximations tried one of them gives a very

convergent series and the smallest value for the admit-

tance. Two points measured experimental y agree wi thin

5 per cent with the curve for l/Z.2Z vs KOd. The approxi-

mation consists of taking the field of the dornirmnt

mode in the empty waveguide as the field at the discon-

tinuity, i.e.:

T%, y) =32(X, y) ==-W(*, y). (30)

If one substitutes into (29) and performs the neces-

sary integrations one obtains

zl,o(~)
— = .$,Mnt2

222

(31a)

Y’”zl,l(l~zl,o(t)

212
= &g, Mm’ (31b)

where

‘m=d’%)2‘2’;’”(1)‘:::;){’-[s]2‘}‘in’m(die”d
(32)



74 IRE TRANSACTIONS ON MICRO WAVE THEORY AND TECHNIQUES January

.Lkd
o 1.0

(a)

n

1.0

0.5

I

o 1 ( 1,! 111!! I,, l!l a
o 0.5 I.0 I.5 2.0

(b)

Fig. 9—(a) Shunt impedance offered by the discontinuity;
(b) transformer rat]o.

The series converges very rapidly and only five terms

are necessary. B1,~(di~I) is given in (23a); q~ is plotted in

Figs. 5–8 for m=2, 3, 4, 5 and in Fig. 3 for m= 1.

Fig. 9 is a plot of

Z$22 1 dzl,rJ@
~— andn=———— —

Z1,0(2) Ml
VS Kod

Zl,l(l)

for an X-band rectangular waveguide, for L =3.2 cm

and e=2.49.

Eq. (31) indicates that we can replace the discon-

tinuity by the four-terminal network of Fig. 10, a pure

I I

I
1:

T,

E \z:;

zaz lAir Guide

n
:
z

Fig, 10—Circuit equivalent w the discontinuity.

shunt and an ideal transformer with the following trans-

form ratio:

222 1 zl,ll(~)
n?= ——----

Zl, M12 z] .1(1)

The reference planes are at the plane of the disconti -

nuity z = O in Fig. 1.
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